Compulsory modules:

<table>
<thead>
<tr>
<th>INS IN Introduction to Neuroscience</th>
<th>Einführung in die Neurowissenschaften</th>
<th>Compulsory module</th>
<th>13 CP = 390 h</th>
<th>10 SWH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contact study</td>
<td>Self study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 SWH / 150 h</td>
<td>240 h</td>
</tr>
</tbody>
</table>

Content

Series of lectures on selected topics in neurosciences I (WS)
- **Content**: Cellular, molecular and physiological background to the function of nerve and glia cells. Mechanisms of signal transduction. Plasticity, learning, memory, sensory systems, motor control, nervous system function, basis of cognition, development of the nervous system, rhythmic control of nerve function and anatomy of the human brain.

Series of lectures on selected topics in neurosciences II (SS)
- The lectures go into more detail about specific aspects of experimental neurology, pathology and diagnostics, including non-invasive analyses of the human brain, degenerative diseases of the nervous system and medical psychology as well as methodological developments, e.g. optogenetics.

Seminars relating to the lectures in selected topics in neurosciences I and II
- The students will assess research papers relevant to the lectures

Introductory sessions
- Introducing neurobiology research in Frankfurt. Presenting the Master’s programme.

Colloquium
- Participating in 7 neurobiology oriented colloquia at the institutes

Weekend seminar
- Presenting and discussing research projects within the Master’s programme; thematisation of ethical and legally relevant aspects in the neurosciences

Objectives

The students gain broad interdisciplinary background knowledge about neurosciences and their possible applications. They learn about neuroscientific research concepts and should be in the position to link together various specific areas and paradigms in neurosciences. They will be able to critically assess scientific research papers in the form of an oral presentation.

Requirements for participating

None

Helpful previous knowledge

None

Assignment of module (course / department)

Interdisciplinary Neuroscience / FB15

Suitable for other courses

No

Times offered

Once per year, winter semester

Duration

Module covers the first two semesters of the course

Person in charge

Head of examination board

Confirmation of module completion:

Proof of participation: In all units (except lectures)

Course assessment: Seminar talk in both seminars (WiSe, SoSe) related to the lectures

Teaching forms: Lecture, seminar, colloquium, self-studies
<table>
<thead>
<tr>
<th>Tuition language</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul exam</td>
<td>Form / duration/ content(if applicable)</td>
</tr>
<tr>
<td>Cumulative module exam:</td>
<td>One written exam (90 minutes long) per set of lectures:"Neuroscience I –selected topics” and “Neuroscience II – selected topics” (each at the end of a semester)</td>
</tr>
<tr>
<td>Determination of module grading</td>
<td>arithmetic average of the grades of both written exams</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Introduction to Neuroscience</th>
<th>Form of teaching</th>
<th>SWH</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture Selected topics in Neurosciences I</td>
<td>L, SeStu</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Seminar to the lecture Selected topics in Neurosciences I</td>
<td>S, SeStu</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Lecture Selected topics in Neurosciences II</td>
<td>L, SeStu</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Seminar to the lecture Selected topics in Neurosciences II</td>
<td>S, SeStu</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Introductory session</td>
<td>L, S</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Colloquia</td>
<td>Ko</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Weekend seminar</td>
<td>S, SeStu</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module exam</td>
<td>0</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sum</td>
<td>10</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
INS BM
Introduction into Basic Methods in Neuroscience
Einführung in Basismethoden der Neurowissenschaften
Compulsory module
13 CP = 390 h
11 SWH

Contact study
11 SWH / 165 h
Self study
225 h

Content

The module focuses on the following areas:

(1) Methods of cell biology, molecular biology and genetics: Imparting of knowledge on practical and theoretical basics for working with chemical solutions, physical-chemical features of proteins and their isolation, subcellular fractioning and centrifugation, preparation of cell cultures, immune-histology and microscopy and the basic principles of molecular genetics and genomics.

(2) Anatomy of the central nervous system: Using slices, plastic models and stored data-sets the structure and the development of the human brain and spinal cord are shown, including the autonomous nervous system and the cerebral blood supply. Furthermore imaging methods like MRI and fMRI are introduced. Also the evaluation of brains and animal model organisms are discussed.

(3) Electrophysiology: In lectures and seminars/discussions the basics of membrane potentials, action potentials, forwarding of potentials, synaptic morphology/geometry/function are dealt with. Important methods for recognition and analysis of single neurons (extracellular, intracellular, patch-clamp) and neural networks activity are discussed. Both electrical and optical techniques of neural stimulation are presented.

(4) MATLAB-programming and statistics: Basics of programming of neural data recordings and analysis with MATLAB are discussed. A focus lies on practical programming exercises. Basic statistical methods are introduced, discussed and realised in MATLAB.

(5) Legal and ethical aspects of animal experimentation, genetic manipulations, biological safety and proper scientific conduct are imparted.

Objectives

Within this module the students learn to discuss intensely and independently theoretical as well as practical contents of the study. They attain practical competence in cellular and molecular lab techniques, cell culture techniques and programming of neuro-biological questions in MATLAB. When having finished the module they have basic knowledge on neurogenetics. They have fundamental knowledge on human brain anatomy as well as animal models, can identify important cerebral structures and interpret histological preparations adequately. They possess basic knowledge regarding neural potentials and synaptic mechanisms and can assess potentialities and limitations of electro-physiological technologies. They can apply adequate statistical methods in assessing significance and comparison of neural records. They will attain competence regarding rules of good scientific practice, and to keep the directives regarding genetic works, bioassay practices, and animal welfare.

Requirements for participating

None

Helpful previous knowledge

None

Assignment of module (course/department)
MSc Interdisciplinary Neuroscience / FB15

Suitable for other courses
no

Times offered
Once per year, 1. half of the winter semester

Duration
6 weeks (3-4 days per week)

Person in charge
Head of examination board

Confirmation of module completion:

Proof of participation
Regular participation in all units

Course assessment
Successful (at least grade 4 = „sufficient“) performance in graded tests following each teaching unit listed under „content“
<table>
<thead>
<tr>
<th>Teaching forms</th>
<th>Practical, lecture, seminar, exercises, self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition language</td>
<td>English</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
</tr>
<tr>
<td>Final modul exam</td>
<td>Form / duration / content (if applicable)</td>
</tr>
<tr>
<td></td>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction into Basic Methods in Neuroscience</td>
<td>L, S, P, exercises, SeStu</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Methods of cell biology, molecular biology and genetics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatomy of the central nervous system</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Electrophysiology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATLAB programming and statistics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal and ethical aspects of animal experimentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>11</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
Module description Master „Interdisciplinary Neuroscience“

<table>
<thead>
<tr>
<th>INS MN Methods in Neuroscience</th>
<th>Einführung in neurowissenschaftliche Arbeitstechniken</th>
<th>Compulsory module</th>
<th>15 CP = 450 h</th>
<th>15 SWH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Contact study</td>
<td>Self-study</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 SWH / 225 h</td>
<td>225 h</td>
<td></td>
</tr>
</tbody>
</table>

Content

The module is a practical on “Introduction to scientific research techniques”. The aim is to teach the students as much as possible about the most important experimental techniques recommended for the specialised topics of their Master’s project so that their thesis work can be completed successfully in the time available.

Objectives

After completing the module, the students will be familiar with the basic techniques that apply directly to a Master’s project in their chosen topic. They will be able to efficiently find information about methods from publications and the Internet and evaluate the feasibility of experimental designs. They will be competent in criticizing methods and assessing artefacts.

Requirements for participating

Successful completion of the module “Introduction to Neurosciences” and the module “Basic Methods in Neuroscience” as well as at least 2 out of the 3 elective modules

Helpful previous knowledge:

- Assignment of module (course/department): Interdisciplinary Neuroscience / FB15
- Suitable for other courses: no
- Times offered: As of 3rd semester of the course
- Duration: 6 weeks
- Person in charge: Representatives of elective modules
- Confirmation of completion
 - Participation
 - Course assessment: Practical protocol
 - Teaching forms: Practical, self-study
 - Tuition language: English
- Module exam
 - Module completion exam: Form / duration / content (if applicable) none
- Methods in Neuroscience
 - Teaching forms: Practical, SeStu
 - SWH: 15
 - CP: 15
 - Semester:
	1	2	3	4
	15	15		X
Content

The module includes a practical project and a seminar that aims to provide the students with the most important theoretical background for developing a research concept in one neurobiological topic. After working on recent scientific papers, they should identify critical unanswered questions as well as develop research strategies to solve them.

Weekend seminar:
Presentation and discussion of research projects in the neurosciences; thematisation of ethical and legally relevant aspects in the neurosciences

Objectives

After completing the module, the students will be familiar with developing scientific research concepts as well as how to incorporate these into grant applications. The students will develop critical skills to assess the relevance and validity of different or even contradictory theories and research concepts. The students attain competence regarding rules of good scientific practise, and ethical aspects of topical methods in neuroscience like neural stimulation or neuroenhancement. They will attain topical knowledge concerning bioassay practise, protection of animals directives and animal welfare act.

Requirements for participating

Successful completion of the module “Introduction to Neurosciences” and the module “Basic Methods of Neuroscience” as well as at least 2 out of the 3 elective modules

Helpful previous knowledge:

Assignment of module (course/department)	Interdisciplinary Neuroscience / FB15
Suitable for other courses | no
Times offered | As of 3rd semester of the course
Duration | 6 weeks
Person in charge | Representatives of elective modules

Teaching forms

Practical, seminar, self-study

Tuition language

English

Module exam

Non-graded oral exam: seminar talk

Current Concepts in Neuroscience	Teaching forms	SWH	CP	Semester
Project work | P, SeStu | 15 | 15 | 2
Weekend seminar | S, SeStu | 1 | 1 | 4
Module description Master „Interdisciplinary Neuroscience“ as of 01.03.2022

<table>
<thead>
<tr>
<th>INS MA</th>
<th>Masterthesis</th>
<th>Masterarbeit</th>
<th>Compulsory module</th>
<th>30 CP = 900 h</th>
<th>30 SWH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contact study</td>
<td>Self-study</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 SWH / 450 h</td>
<td>450 h</td>
<td></td>
</tr>
</tbody>
</table>

Content

As part of the Master’s degree a student uses scientific methods to work intensively and in detail on a particular question for a period of 6 months. The work can be experimental, empirical or analytic. The results must be written up in a Master’s thesis in the style of a scientific paper. The quality of the work will be assessed based on the written thesis by the supervisor and a second referee.

Objectives

The students will be able to work intensively and in detail on a scientific question. They will have learned practical application of modern research methods and who to produce a written work in the style of a scientific publication.

Requirements for participating

Proof of at least 79 CP

Helpful previous knowledge:

Assignment of module (course/department)

Interdisciplinary Neuroscience / FB15

Suitable for other courses

No

Times offered

The timing is open

Duration

6 months

Person in charge

Representatives of elective modules

Confirmation of completion

None

Participation

Course assessment

Practical, self-study

Tuition language

English

Module exam Form / duration/ content (if applicable)

Graded written work in the form of a Master’s thesis, the grades will carry double the weight of the grades in all other modules

Module completion exam

<table>
<thead>
<tr>
<th>Masterthesis</th>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masterthesis</td>
<td>P, SeStu</td>
<td>30</td>
<td>30</td>
<td>X</td>
</tr>
</tbody>
</table>
Elective Modules Subject Area A: Basic Neuroscience

<table>
<thead>
<tr>
<th>INS A-0</th>
<th>Externes Praxismodul „Neurowissenschaftliche Grundlagenforschung“</th>
<th>Elective module</th>
<th>11 CP = 330 h</th>
<th>11 SWH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contact study 11 SWH / 165 h</td>
<td>Self-study 165 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content

The practical provides basic methods and technologies in basic research in the neurosciences. The students work on own topical projects under instructions and introduce the results in the form of a seminar talk. They learn how to present scientific work through writing up an appropriate result protocol.

The module can be offered by departments of the Goethe university, from other universities in Germany and foreign countries as well as by external-university research facilities.

Objectives

The students gain knowledge in the realisation of neuro-biological experiments in the area of basic research. They learn working independently on scientific questions based on relevant publications.

Requirements for participating

none

Helpful previous knowledge:

none

Assignment of module (course/department)

Interdisciplinary Neuroscience / FB15

Suitable for other courses

Depending on provider

Duration

Depending on provider

Person in charge

Head of examination board of the master’s degree course “Interdisciplinary Neuroscience

Confirmation of completion

Participation

Regular participation

Course assessment

The regulations of the provider of the elective module are applied. If the provider does not request any study proofs, a working report must be written, and talks have to be given on both, results of own experiments and topical literature.

Teaching forms

Practical, self-study

Tuition language

Depending on provider

Module exam

Module completion exam

The regulations of the provider of the elective module are applied.

If grading is not scheduled by the provider, the module completion exam shows a graded protocol.

External Practical Module “Basic Neuroscience”

<table>
<thead>
<tr>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>11</td>
<td>11</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sum</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Content
The practical presents the basics of generating endogenous circadian rhythms in mammalian neurons. Here, the students analyze the cellular and molecular elements for chronobiological behaviour, working under supervision, and write up the results. Then the results obtained are presented in the form of a seminar talk. In a further seminar talk they present original research from the area of chrononeurobiology. The following techniques will be introduced: immunohistochemistry, protein gel electrophoresis, RNA extraction, RT-PCR, densitometry.

Objectives
Basic knowledge about cell and molecular biology, basic skills in neuroanatomy of the mammalian brain, basics in chronobiological systems biology, learning to work on scientific questions based on relevant publications.

Requirements for participating
none

Helpful previous knowledge:
none

Assignment of module (course/department) Interdisciplinary Neuroscience / FB15

Suitable for other courses

Times offered Once per year, summer semester

Duration 4 weeks

Person in charge Prof. Erik Maronde

Confirmation of completion

Course assessment
1 seminar talk on the results of one’s own experiments, 1 seminar talk on current publications, work report

Teaching forms Practical, self-study

Tuition language English

Module exam Form / duration / content (if applicable)
Graded protocol or written exam (45 minutes)

Module completion exam

<table>
<thead>
<tr>
<th>Clock Mechanisms in Mammalian Neurons and Neuroendocrine Cells</th>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Contents
This practical focuses on basic methods for investigating the nervous system of *Caenorhabditis elegans*. As well as more general molecular biology methods, this involves genetic methods (crosses, genotyping) as well as simple behaviour assays without and with the effect of specific agonists for ligand mediated ion channels (nicotinic acetylcholine receptors, GABA receptors) that are used for general characterization of the function of neuromuscular synapses. In addition, cell biology methods for expression analysis of transgenes (GTP-fusion proteins) or endogenous proteins (using specific antibodies) in relation to the genetic background are part of the lab’s standard repertoire. More specialised methods that are used are exogenous stimulation of neurons in *C. elegans* by light, transmitted by the transgene expressed, photo-activated cation channel rhodopsin-2, as well as electrophysiological conductance from *C. elegans* muscle cells (the latter only as a demonstration, since the method is too complicated to learn in 6 weeks).

The students work on a current research project under the supervision of a PhD student and present the results in the form of a seminar talk. They learn how to present scientific work through writing up their result protocol.

Objectives
Familiarity with standard methods to analyse an invertebrate nervous system, genetic methods for making crosses, cell biology methods, molecular biology methods, learning to work on scientific questions based on relevant publications.

Requirements for participating
none

Helpful previous knowledge:
none

Assignment of module (course/department) Interdisciplinary Neuroscience / FB15

Suitable for other courses

Times offered Twice per year, winter semester, summer semester

Duration 4-6 weeks

Person in charge Prof. Alexander Gottschalk

Confirmation of completion

Participation Regular participation

Course assessment 1 seminar talk on the results of one’s own experiments, work report

Teaching forms Practical, self-study

Tuition language English

Module exam

Module completion exam

Form / duration / content (if applicable)
Graded protocol

Neurobiology of the Nematode *Caenorhabditis elegans*
Teaching forms SWH CP Semester
Practical P, SeStu 11 11 1 2 3 X
Module exam
Sum 11 11
Module description Master „Interdisciplinary Neuroscience“

INS A-8 Neuropharmacology

<table>
<thead>
<tr>
<th>Neuropharmakologie</th>
<th>Elective module</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 CP = 330 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact study</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 SWH / 165 h</td>
<td>165 h</td>
</tr>
</tbody>
</table>

Content

This module teaches principles and methods of neuropharmacology. Our lab works with animal models of neurodegenerative disease such as stroke and dementia of the Alzheimer type. We use in vitro- as well as in vivo-methods, with a focus on microdialysis which allows access to the extracellular fluid. In demonstrations and experiments, students will be trained to manufacture probes for microdialysis studies and will carry out measurements of neurotransmitters (e.g. acetylcholine, glutamate) and energy metabolites (glucose, lactate). Major topics will include investigations of the central cholinergic system and of the energy metabolism in the brain under ischemic conditions.

The students will write protocols for their own work and will analyze their data both graphically and statistically in a way that would permit publication; thus, the students will learn basics of scientific work. The individual projects will be presented as seminar talks at the end of the module. In a further seminar talk, they will present an original piece of research (publication) from the field of neuropharmacology.

Objectives

Familiarity with biological and analytical experiments, basic knowledge in animal experimentation. Theory and practice of microdialysis, analysis of neurotransmitters and metabolites with chromatographic (HPLC) and enzymatic procedures. Addressing scientific questions with the help of relevant literature.

Requirements for participating

none

Helpful previous knowledge:

none

Assignment of module (course/department)

Interdisciplinary Neuroscience / FB15

Suitable for other courses

yes

Times offered

Twice per year, winter semester, summer semester

Duration

4 weeks

Person in charge

Prof. Jochen Klein

Confirmation of completion

Regular participation

Course assessment

1 seminar talk on the results of one’s own experiments, 1 seminar talk on current publications, work report

Teaching forms

Practical, self-study

Tuition language

English

Module exam

Form / duration / content (if applicable)

Graded protocol

Neuropharmacology

<table>
<thead>
<tr>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>sum</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 11</td>
</tr>
</tbody>
</table>
Content
The practical covers basic electrophysiological single cell techniques (patch-clamp recordings & extracellular electrodes) of the dopaminergic midbrain system of mice in vivo and in vitro. The students work on their own projects under supervision and present their results in the form of a seminar talk. In a further seminar talk they present an original piece of research from the field of basal ganglia neurophysiology and pathophysiology (e.g. Parkinson’s disease, schizophrenia, drug addiction). The main focuses are measuring and evaluating neuronal activity (current-clamp) and measuring (voltage-clamp) as well as biophysical and pharmacological characterisation of this neuronal activity mediated by synaptic and post-synaptic mechanisms (e.g. ion channels) with various configurations of the patch-clamp technique. This also includes using statistical evaluation methods. The students learn about the associated stochastic background and how to use the relevant software, which involves interdisciplinary cooperation with the BSc/MSc courses in mathematics.

Objectives
Familiarity with carrying out electrophysiological experiments, measuring and analysing electrical activity of dopaminergic neurons in vivo and in vitro, using and evaluating the patch-clamp technique to characterise biophysical and pharmacological properties of synaptic and post-synaptic ion channels. Combination of the patch-clamp technique with neuroanatomical and immunohistological analyses. Basic computer modelling of neuronal activity. Stochastic description and statistical analysis of the recorded time sequence data. Understanding the molecular pathophysiological correlation between important diseases of the dopaminergic system and their corresponding mouse models.

Requirements for participating
none

Helpful previous knowledge:
none

Assignment of module (course/department) Interdisciplinary Neuroscience / FB15

Suitable for other courses

Times offered Once per year, summer semester

Duration 4 weeks

Person in charge Prof. Jochen Roeper

Confirmation of completion

Participation Regular participation

Course assessment 1 seminar talk on the results of one’s own experiments, 1 seminar talk on current publications, work report

Teaching forms Practical, self-study

Tuition language English

Module exam
Module completion exam Form / duration / content (if applicable) Graded protocol

<table>
<thead>
<tr>
<th>Cellular Neurophysiology of Dopaminergic Neurons</th>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>X</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Neurophysiology and Behaviour

Content

The practical investigates the neurophysiological basis of behaviour control. The students work on their own project on a theme defined together beforehand. The techniques that are taught include: cell physiology (patch-clamp conductance, intracellular conductance, calcium imaging, cell culture); neuroanatomy (staining methods, brain preparation, confocal laser microscopy, fluorescence microscopy); behavioural experiments (behaviour pharmacology, extracellular conductance, learning and memory, social behaviour). Insects (honey bees, drosophila) are used as model organisms. The principle areas are: how ion channels and transmitter receptors work, neuromodulation, learning behaviour, olfactory memory formation, and social behaviour of bees.

The students present their results in the form of a seminar talk and poster. In a further seminar talk they learn how to critically assess analytic physiological and behavioural research papers. These presentations are held in English and the students receive comprehensive feedback about the content and style of the presentation. They become familiar with writing a scientific publication by producing a protocol in the form of a paper.

After the individual experimental steps have been explained, the students mostly work independently, from planning to carrying out, writing up and evaluating the research data.

Objectives

Planning, carrying out and evaluating neurobiology experiments, measuring ion flow; observing and quantifying behaviour; neuroanatomical methods. How to approach scientific questions, working with publications. Preparing scientific papers and presentations.

Requirements for participating

none

Helpful previous knowledge:

none

Assignment of module (course/department)

Interdisciplinary Neuroscience / FB15

Suitable for other courses

yes

Times offered

Once per year, summer semester

Duration

4 weeks

Person in charge

Prof. Bernd Grünewald

Confirmation of completion

Regular participation

Course assessment

1 seminar talk on the results of one’s own experiments, 1 seminar talk on current publications, work report

Teaching forms

Practical, self-study

Tuition language

English

Module exam

Module completion exam

Form / duration / content (if applicable)

Graded protocol

Neurophysiology and Behaviour

<table>
<thead>
<tr>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
The practical course offers basic theoretical and experimental knowledge in the area of the brain vasculature in developmental and pathological neurobiology. Principal areas of research are the development and maintenance of the blood-brain barrier (BBB), and its relevance for neuronal function. The students take part in ongoing experiments in the laboratory to elucidate the molecular mechanisms of BBB formation. Their work may include: basic mouse genetics techniques and the handling of transgenic mice (various reporter mouse strains for the Wnt pathway as well as conditional/inducible gain- and loss-of-functions strains), processing of brain tissue for in situ hybridization and immunohistochemistry, isolation of primary cortical microvessels from mice, transfection and infection techniques, immunofluorescence, confocal and live-cell microscopy, biochemical techniques including protein gel electrophoresis, Western blot and immunoprecipitation.

The results of the practical course are presented by every student on the form of a written protocol and a talk at the end of the course. The students also take part in the weekly lab meetings where they learn about the ongoing research of all the members of the group. In a Journal Club every student presents a recent publication on the field of their own projects.

Objectives
Students learn the basic techniques to study cellular and molecular Neurobiology (as detailed above). By the end of the course they have been in direct contact with mice and/or cells in vitro and they learn how to appropriately handle mouse tissue and cells for experiments. The students are in an international environment and learn how to write and communicate their results in English.

Requirements for participating
none

Helpful previous knowledge:
none

Assignment of module (course/department) Interdisciplinary Neuroscience / FB15

Suitable for other courses yes

Times offered Once per year, summer semester

Duration 4 weeks

Person in charge PD Dr. Stefan Liebner

Confirmation of completion

Participation Regular participation

Course assessment 1 seminar talk on the results of one’s own experiments, 1 seminar talk on current publications, work report

Teaching forms Practical, self-study

Tuition language English

Module exam

Module completion exam Form / duration / content (if applicable)

Graded protocol

<table>
<thead>
<tr>
<th>The Neuro-Vascular Interface</th>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>X</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Content

Topic of this practical course are principles of neurogenesis in vertebrates, with special focus on cell intrinsic mechanisms governing cell fate specification and differentiation of adult and embryonic stem- and progenitor cells in the brain.

The students work on their own projects with supervision and present their results in the form of a seminar talk. In addition, one original publication from recent literature relevant to his/her research project will be presented and discussed. The results obtained during the course will be recorded in a written results protocol either in the form of a short research paper or of a short grant application in order to allow the students to gain first practical experience in these two important forms of scientific writing.

Objectives

The practical course teaches basic techniques in cellular and molecular developmental neuroscience. Model organisms used are mice and chick embryos. Emphasis will be placed on retroviral gene transfer *in vivo* and *in vitro*; working with cell lines and primary cell cultures (embryonic and adult neural stem and progenitor cells); biochemical techniques (sub cellular fractionation, protein purification); immunohistochemistry, in situ hybridization; working with transgenic animals.

Requirements for participating

none

Helpful previous knowledge:

none

Assignment of module (course/department)

Interdisciplinary Neuroscience / FB15

Suitable for other courses

yes

Times offered

Once per year, summer semester

Duration

4 weeks

Person in charge

Prof. Dorothea Schulte

Confirmation of completion

Regular participation

Course assessment

1 seminar talk on the results of one’s own experiments, 1 seminar talk on current publications, work report

Teaching forms

Practical, self-study

Tuition language

English

Module exam

Content / duration / content (if applicable)

Graded protocol

Module completion exam

Semester

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This practical will introduce students to the techniques used to examine neural activity in freely behaving animals. Students will record neural activity extracellularly from the hippocampus of mice performing a spatial working memory task and analyze the neural data in relation to the animal’s behavior. Students will learn how to train animals to perform a behavioral task, how to perform extracellular recordings in freely behaving animals; how to extract the spiking of individual neurons as well as local field potentials from the neural data; and how to analyze these signals in relation to each other and the animals’ behavior. Students will present the data they have collected and analyzed at the end of the practical. In addition, they are required to present one recent paper that is relevant to the work in a journal club.

Objectives
Behavioral training; basic knowledge of techniques used to record and analyze neural activity from freely behaving animals; ability to generate scientific hypotheses based on previous literature and design experiments to test them.

Requirements for participating
none

Helpful previous knowledge:
none

<table>
<thead>
<tr>
<th>Assignment of module (course/department)</th>
<th>Interdisciplinary Neuroscience / FB15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable for other courses</td>
<td>yes</td>
</tr>
<tr>
<td>Times offered</td>
<td>Twice per year, winter semester, summer semester</td>
</tr>
<tr>
<td>Duration</td>
<td>4 weeks</td>
</tr>
<tr>
<td>Person in charge</td>
<td>Dr. Torfi Sigurdsson/Prof. Manfred Kössl (program director)</td>
</tr>
<tr>
<td>Confirmation of completion</td>
<td></td>
</tr>
<tr>
<td>Participation</td>
<td>Regular participation</td>
</tr>
<tr>
<td>Course assessment</td>
<td>1 seminar talk on the results of one’s own experiments, 1 seminar talk on current publications, work report</td>
</tr>
<tr>
<td>Teaching forms</td>
<td>Practical, self-study</td>
</tr>
<tr>
<td>Tuition language</td>
<td>English</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
</tr>
<tr>
<td>Module completion exam</td>
<td></td>
</tr>
</tbody>
</table>

Module exam
- **Electrophysiological recordings in freely behaving animals**
 - Teaching forms: P, SeStu
 - CP: 11
 - SWH: 11
 - Sum: 11

Module completion exam
- **Form / duration / content (if applicable)**
 - Graded protocol

Times offered
- Twice per year, winter semester, summer semester

Duration
- 4 weeks

Person in charge
- Dr. Torfi Sigurdsson/Prof. Manfred Kössl (program director)

Confirmation of completion
- Regular participation

Course assessment
- 1 seminar talk on the results of one’s own experiments, 1 seminar talk on current publications, work report

Teaching forms
- Practical, self-study

Tuition language
- English

Assignment of module (course/department)
Interdisciplinary Neuroscience / FB15

Suitable for other courses
yes

Times offered
Twice per year, winter semester, summer semester

Duration
4 weeks

Person in charge
Dr. Torfi Sigurdsson/Prof. Manfred Kössl (program director)

Confirmation of completion
Regular participation

Course assessment
1 seminar talk on the results of one’s own experiments, 1 seminar talk on current publications, work report

Teaching forms
Practical, self-study

Tuition language
English

Module exam

Module completion exam

Electrophysiological recordings in freely behaving animals
- Teaching forms: P, SeStu
- SWH: 11
- CP: 11
- Semester: 1, 2, 3, 4
 - X
Auditory Function and Dysfunction: Behavior and Physiology

Content

The practical teaches techniques to determine auditory function and dysfunction in rodents. These techniques can be used to determine effects of pharmacological or behavioral treatments of sensory disorders such as tinnitus or hearing loss. The focus is on behavioral techniques suitable to characterize the disorder rather precisely in comparison to normal functions. All steps that are necessary for a project in the field are taught in this practical: study design, animal handling, control of experimental parameters, pharmacological treatment of animals, and data analysis. The behavioral analysis is paralleled by basic electrophysiological measurements necessary to determine the effects of dysfunction and treatments at the physiological level. The students work on their own projects under supervision and present their results in the form of a seminar talk. The main focuses are: measuring and analyzing behavioral data, performing efficient physiological experiments to determine auditory function, and statistical evaluation methods. Preparation of a potential publication will be the final part of the project. After completion, the individual projects will be presented and discussed in the form of a seminar talk. In a further seminar talk the students will present an original piece of research from the area of cognition and hearing.

Objectives

Familiarity with carrying out well controlled behavioral experiments (animal handling, measuring and analyzing behavioral data, statistical analysis). Performing physiological measurements including electrophysiological recording in minimally invasive preparations. Additional aspects are: introduction to software for data handling, signal processing, and graphical display. Deriving scientific questions from the current literature. Knowledge about the usage and limitations of animal models for neurological diseases.

Requirements for participating

none

Helpful previous knowledge:

none

Assignment of module (course/department) Interdisciplinary Neuroscience / FB15

Suitable for other courses yes

Times offered Once a year, summer semester

Duration 6 weeks

Person in charge PD Dr. Bernhard Gaese

Confirmation of completion

Participation Regular participation

Course assessment 1 seminar presentation on the results of one’s own experiments, 1 seminar presentation on recent scientific papers, work report

Teaching forms Practical, self-study

Tuition language English

Module exam

Module completion exam Form / duration/ content (if applicable)

Graded protocol

<table>
<thead>
<tr>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Content
The practical covers the whole range of techniques to investigate brain activity underlying the processing of sensory information in the auditory domain. The focus is on electrophysiological single cell techniques in rodents in the awake and anesthetized preparations. Brain activity is acquired and analyzed with the goal to understand behavioral responses following auditory stimulation. Cognitive aspects (e.g. context-dependence) are taken into account. The students work on their own projects under supervision and present their results in the form of a seminar talk. The main focuses are measuring and analyzing neuronal activity in different configurations of in-vivo recording techniques. The following analysis includes modern techniques of signal processing, efficient handling of larger data sets and statistical evaluation methods. Preparation of a potential publication will be the final part of the project. After completion, the individual projects will be presented and discussed in the form of a seminar talk. In a further seminar talk the students will present an original piece of research from the area of cognition and hearing.

Objectives
Familiarity with carrying out physiological experiments (animal handling, surgery, measuring and analyzing electrical activity at the single neuron level. Combining physiology with neuroanatomical and histological staining techniques. Basic introduction to behavioral control. Introduction to software for data handling, signal processing, statistical analysis and graphical display. Understanding cognitive influences on sensory information processing as an important aspect of context-dependent behavior. Deriving scientific questions from the current literature.

Requirements for participating
none

Helpful previous knowledge:
none

Assignment of module (course/department) Interdisciplinary Neuroscience / FB15
Suitable for other courses yes
Times offered Once a year, summer semester
Duration 6 weeks
Person in charge PD Dr. Bernhard Gaese
Confirmation of completion
Participation Regular participation
Course assessment 1 seminar presentation on the results of one’s own experiments, 1 seminar presentation on recent scientific papers, work report

Teaching forms Practical, self-study
Tuition language English
Module exam Module completion exam Form / duration/ content (if applicable) Graded protocol
Content

The main goal of this course is to understand how mammals communicate using acoustic information (sounds). The course is designed from the perspective of the “broadcaster-receiver” approach, and therefore it is consequently subdivided into two parts. The first part is meant for understanding the sounds broadcasted by two mammalian species (Mongolian gerbils and bats) while they are communicating. Basically, using bioacoustics tools, the students will try to figure out the vocal alphabet of bats and gerbils. The second part of the course deals with the receiver. In this part, the students will learn how the gerbil’s voice is processed in the brain by neurons located in the auditory cortex. The main aim here is to assess what happens in the brain when an animal hears a behaviorally relevant sound. At the beginning of each course part, there will be introductory discussions that will provide the students with the necessary theoretical background for conducting and understanding the different experiments. An introduction to statistics and to MATLAB will also be offered. The final report will be written in the form of a scientific paper, and the results will be presented in the form of a short talk.

Objectives

By the end of the course, the students should be able to: (1) Understand basic concepts of bioacoustics such as the sound as a mechanical wave, sound transduction using microphones, analog-to-digital conversion using sound cards. (2) Measure basic parameters of a sound wave (frequency, duration, intensity). (3) Perform basic surgeries required for acquiring neuronal data. (4) Understand basic neuroscience concepts such as: action potential, local field potential, receptive field, brain topography, spike clustering, brain oscillations. (5) Testing hypothesis using basic statistical tests (normality tests, parametric and non-parametric t-tests and analyses of variance (ANOVA)).

Requirements for participating

none

Helpful previous knowledge:

none

Assignment of module (course/department)

Interdisciplinary Neuroscience / FB15

Suitable for other courses

yes

Times offered

Once a year, summer semester

Duration

5 weeks

Person in charge

Dr. Julio Hechavarria / Prof. Manfred Kössl (program director)

Confirmation of completion

Regular participation

Course assessment

1 seminar presentation on the results of one’s own experiments, 1 seminar presentation on recent scientific papers, work report

Teaching forms

Practical, self-study

Tuition language

English

Module exam

Module completion exam

<table>
<thead>
<tr>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuronal basis of acoustic communication in mammals</td>
<td>P, SeStu</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Content

The practical course offers basic theoretical and experimental knowledge in the area of cellular, molecular and systemic neurobiology in mouse and zebrafish. The students work on their own projects under supervision and present the results in the form of a seminar talk. In a second seminar talk they present an original publication from the field of their projects. By writing a result protocol, they will learn how to write scientific reports.

The practical course is divided in two units. The first part includes the following tasks: basic mouse genetic techniques, processing of brain tissue for immunohistochemistry, basic techniques of working with neuronal cell cultures, immunofluorescence microscopy, confocal microscopy, and biochemical techniques including protein gel electrophoresis and Western blotting. In the second part of the practical course, the students will be introduced to basic zebrafish genetics using methods in molecular biology and histological techniques, confocal microscopy and brightfield microscopy as well as zebrafish embryo manipulation and basic behavioral tests.

Objectives

Students learn the basic techniques for studying cellular, molecular, and systemic neurobiology (as detailed above). They work with cultured cells under sterile conditions, with the epifluorescence microscope and the stereo microscope. The students will be trained in zebrafish embryo handling and basic genetic techniques, and quantify and analyse the obtained data and images. The students are in an international environment and learn how to write and communicate their results in English.

Requirements for participating

none

Helpful previous knowledge:

none

Assignment of module (course/department)

Interdisciplinary Neuroscience / FB15

Suitable for other courses

yes

Times offered

Once per year; summer semester

Duration

4 weeks

Person in charge

Prof. Amparo Acker-Palmer, Bettina Kirchmaier,

Confirmation of completion

Participation

Regular participation

Course assessment

1 seminar talk on the results of one’s own experiments, 1 seminar talk on current publications, work report

Teaching forms

Practical, self-study

Tuition language

English

Module exam

Module completion exam

Form / duration / content (if applicable)

Graded protocol

<table>
<thead>
<tr>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sum</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
The aim of this practical module will be to introduce students to optogenetics and fiber photometry techniques in freely behaving animals performing behavioral tasks. The students will learn how to perform chronic surgeries for viral injections and optical fiber implantations; how to perform behavioral tasks; how to run optogenetic experiments in freely behaving animals; how to perform calcium recordings in freely behaving animals using fiber photometry; and how to analyze calcium signals in relation to animal’s behavior. The optogenetic manipulations and calcium recordings will mainly be performed in the midbrain dopamine system while animals perform behavioral tasks such as reward learning paradigms. At the end of the module, the students will present the results of the experiments they performed.
Content

The practical course offers basic theoretical and experimental knowledge in the area of neurodegenerative and vascular disorders. The students work on their own projects under supervision and present the results in the form of a seminar talk. This talk also includes an original publication from the field of their projects. By writing a result protocol, they will learn how to write scientific reports. The practical course consists of systemic, cellular and molecular aspects that will be addressed using transgenic mouse models. This includes the following techniques: in vivo 2-Photon Microscopy, Image- and data analysis, basic mouse genetic techniques, processing of brain tissue for immunohistochemistry, basic primary cell culture techniques, immunofluorescence microscopy, confocal microscopy as well as biochemical techniques including protein gel electrophoresis and Western blotting.

Objectives

In this elective module the student will learn fundamental techniques used in the research area of neurodegenerative disorders (as described above). In vivo 2-Photon imaging enables us to record systemic as well as cellular processes in real time. The students are presented with the opportunity to observe in vivo animal handling and the live imaging process. The acquired data will be analyzed by the students, teaching them basic Image- and data analysis skills. The immunohistochemical stainings of brain sections will teach the students the technique as well as the underlying scientific question of the experiment. Moreover, the students will work with cultured cells under sterile conditions, with the epifluorescence – and stereo microscope. The students are in an international environment and learn how to write and communicate their results in English.

Requirements for participating

none

Helpful previous knowledge:

none

Assignment of module (course/department)
Interdisciplinary Neuroscience / faculty 15

Suitable for other courses

Annually in summer and winter term

Duration

4 weeks, daily

Person in charge

Dr. Jasmin Hefendehl /Prof. Kössl (program director)

Confirmation of completion

Regular participation

Course assessment

Protocol and a 20 min presentation (15 + 5 min) covering the experimental results and a short review of the relevant literature.

Teaching forms

Practical, self-study

Tuition language

English

Module exam

Form / duration / content (if applicable)

Graded protocol

Module completion exam

Cellular and molecular mechanisms in Alzheimer’s Disease and stroke

Teaching forms	SWH	CP	Semester
Practical | P, SeStu | 11 | 1
Module exam | | 11 | 3
Sum | | 11 | 4

Semester

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Module description Master „Interdisciplinary Neuroscience“

INS A-24
Deciphering brain activity during natural behaviour in real time
Dekodierung von Hirnaktivität während des natürlichen Verhaltens in Echtzeit
Elective module
11 CP = 330 h

<table>
<thead>
<tr>
<th>Contact study</th>
<th>11 SWH / 165 h</th>
<th>Self-study</th>
<th>165 h</th>
<th>11 SWH</th>
</tr>
</thead>
</table>

Content

Humans may not be good at multitasking – but their brains are! Cognitive processes such as learning and attention are often represented in the same brain areas, at the same time. Previous research has overwhelmingly focused on how each of these processes affects neuronal activity in isolation. In contrast, in our lab we study how neuronal activity represents such cognitive processes simultaneously, and whether this is evolutionarily preserved or varies across species. For this, we conduct parallel experiments in monkeys and mice. These animals are trained to do naturalistic foraging tasks in a virtual environment, while we record the activity of large neuronal populations in their visual system. Since the lab is still in the build-up phase, what you would do is various. Depending on when you come, you get experience in mouse/monkey handling and training, Matlab/Python programming, psychophysics, virtual reality (VR), and in-vivo electrophysiology.

Objectives

In this elective module the students will get exposed to all the techniques necessary for in-vivo electrophysiology: handling of animals (mice and/or monkeys), training the animals on a natural task in a virtual environment, surgeries to implant electrodes, and electrophysiological recordings from these electrodes as the animals are doing their task. In addition, the students can do some psychophysics on human subjects in the VR, and they will get their own data analysis project, which will allow them to learn Matlab/Python programming. The students are in an international environment and learn how to write and communicate their results in English.

Requirements for participating

- **Helpful previous knowledge:** none

Assignment of module (course/department)

- Interdisciplinary Neuroscience / faculty 15

Suitable for other courses

- Annually in summer and winter term

Person in charge

- Dr. Martha Havenith / Dr Marieke Schölvinck / Prof. Manfred Kössl (program director)

Confirmation of completion

- Regular participation

Course assessment

- Protocol and a 20 min presentation (15 + 5 min) covering the experimental results and a short review of the relevant literature.

Teaching forms

- Practical, self-study

Tuition language

- English

Module exam

<table>
<thead>
<tr>
<th>Module completion exam</th>
<th>Form / duration / content (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Graded protocol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deciphering brain activity during natural behaviour in real time</th>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td>11</td>
<td>11</td>
<td>x</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td>X</td>
</tr>
</tbody>
</table>
Module description Master „Interdisciplinary Neuroscience“ as of 01.03.2022

<table>
<thead>
<tr>
<th>INS A-25</th>
<th>Neuroscience of Navigation and Self-Motion</th>
<th>Neurowissenschaftliche Grundlagen der Navigation und Eigenbewegung</th>
<th>Elective module</th>
<th>11 CP = 330 h</th>
<th>11 SWH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contact study</td>
<td>Self-study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11 SWH / 165 h</td>
<td>165 h</td>
</tr>
</tbody>
</table>

Content

We interact with the world by moving and navigating through it, whenever we go to our kitchen or explore a new shopping mall; and whenever we drive a car or climb a mountain trail. Labour group studies the brain circuits responsible for sensing our own body’s motion, controlling balance, and finding one’s way through the word. We perform neuronal recordings in small squirrel-sized monkeys, the Marmosets, in experiments where they can be seated in moving platforms or move freely in natural cages. We are also a computational lab where we develop models of self-motion sensation, based in particular on the Bayesian formalism. A tour in the lab will allow you to learn about the techniques of extracellular recordings and neuronal data analysis, about motion and navigation science, and about theoretical and systems neuroscience. The students will discuss with Dr. Laurens to define a research in project in one of the lab’s thematic: navigation (head direction cells system), self-motion (vestibular system), cerebellar physiology, Bayesian modeling.

Objectives

In this elective module the students will get exposed to the techniques of system neuroscience: design and operation of chronic implants; analysis of neuronal spiking data and LFP; 3D motion tracking and analysis, programming of robotic platforms. They will also learn about one of the lab’s scientific fields: navigation, self-motion sensation, cerebellar physiology, Bayesian modeling. Note that direction participation to experiments with monkeys is not possible since the mandatory training typically takes longer than 4 months to complete. The students are in an international environment, they write and communicate their results in English.

Requirements for participating

(at least) basic level in Matlab programming

Helpful previous knowledge:
Projects at the lab are generally oriented towards motion science, data analysis and modeling, therefore an affinity with mathematics (calculus, algebra, statistics…) is helpful.

Assignment of module (course/department) Interdisciplinary Neuroscience / faculty 15

Suitable for other courses

Times offered Annually in summer and winter term

Duration 4 weeks, daily

Person in charge Dr. Jean Laurens / Prof. Manfred Kössl (program director)

Confirmation of completion

Participation Regular participation

Course assessment Protocol and a 20 min presentation (15 + 5 min) covering the experimental results and a short review of the relevant literature.

Teaching forms Practical, self-study

Tuition language English

Module exam

Module completion exam Form / duration / content (if applicable)

Graded protocol

<table>
<thead>
<tr>
<th>Neuroscience of Navigation and Self-Motion</th>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td>4</td>
</tr>
</tbody>
</table>
Elective Modules Subject Area B: Clinical Neuroscience

<table>
<thead>
<tr>
<th>INS B-0</th>
<th>Externes Praxismodul „Klinische Neurowissenschaften“</th>
<th>Elective module</th>
<th>11 CP = 330 h</th>
<th>11 SWH</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Practical Module “Clinical Neuroscience“</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content

The practical provides basic methods and technologies in clinical neurosciences. The students work on their own topical projects under instructions and introduce the results in the form of a seminar talk. They learn how to present scientific work through writing up an appropriate result protocol.

The module can be offered by departments of the Goethe University, from other universities in Germany and foreign countries as well as by external-university research facilities.

Objectives

The students gain knowledge in the realisation of experiments in the area of clinical neurosciences. They learn working independently on scientific questions based on relevant publications.

Requirements for participating

none

Helpful previous knowledge:

none

Assignment of module (course/department)

Interdisciplinary Neuroscience / FB15

Suitable for other courses

Depending on provider

Duration

Depending on provider

Person in charge

Head of examination board of the master’s degree course “Interdisciplinary Neuroscience

Confirmation of completion

Regular participation

Course assessment

The regulations of the provider of the elective module are applied. If the provider does not request any study proofs, a working report must be written, and talks have to be given on both, results of own experiments and topical literature.

Teaching forms

Practical, self-study

Tuition language

Depending on provider

Module exam

Module completion exam

Form / duration / content (if applicable)

The regulations of the provider of the elective module are applied.

If grading is not scheduled by the provider, the module completion exam shows a graded protocol.

<table>
<thead>
<tr>
<th>External Practical Module “Clinical Neuroscience“</th>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>X</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
The practical focuses on basic methods for investigating principle mechanisms of pain and inflammation. For this purpose, various animal and cell culture models are applied and, by the use of knock-out models or pharmacological intervention, novel treatment strategies are examined. The students perform individual studies under supervision. The results will be documented in a protocol and presented and discussed in a seminar talk at the end of the practical.

The experiments comprise behavioral experiments with mice, tissue preparation, cultivation and stimulation of cells, preparation of protein and RNA from these materials, PCR und Western-Blot analysis.

Familiarity with several of the following areas: various experimental pain models in mice, observing the behaviour of mice, preparing tissue for immunohistochemistry and Western blots, setting up neuronal cell culture, introduction to calcium imaging, measuring primary sensory neurons and pharmacological effects, learning about in vitro cell culture models for investigating the pharmacology of inflammatory mechanisms, measuring mediators of inflammation in a cell culture model, preparing one’s own results in the form of a talk and written protocol.

none

none

Interdisciplinary Neuroscience / FB15

Once per year, summer semester

4 weeks, daily

Prof. Dr. Ellen Niederberger

Regular participation

Protocol and a 20 min presentation (15 + 5 min) covering the experimental results and a short review of the relevant literature.

Practical, self-study

English

Graded protocol

Teaching forms

Tuition language

Module completion exam

Form / duration / content (if applicable)

Graded protocol

<table>
<thead>
<tr>
<th>Semester</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>X</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
The practical course and seminars provide an interdisciplinary overview of neural plasticity in the hippocampus. The main topics of research comprise morphological and physiological responses of hippocampal neurons to CNS damage or neuronal (over-) stimulation, cellular network dynamics, as well as the underlying molecular mechanisms of hippocampal plasticity and homeostasis. To study these processes, we use the model of organotypic slice cultures of the hippocampus. Experimental techniques include optogenetic manipulation of cell activity, live-cell and fixed tissue imaging (confocal microscopy), immunocytochemistry, patch-clamp, pharmacology, and molecular biology methods. Students will learn appropriate techniques within a current research project, conduct their own experiments under supervision, and present their scientific work in a seminar talk. The accompanying seminars will give insights into relevant current publications, experimental models, and research methods and consider their relevance in clinical translation.

Objectives

Students will gain knowledge and training in basic anatomical and physiological techniques, cell culture, and confocal microscopy and learn how to work on scientific questions based on relevant publications.

Requirements for participating

none

Helpful previous knowledge:

Experimental work in a “wet lab”.

Assignment of module (course/department)

Interdisciplinary Neuroscience / FB15

Suitable for other courses

yes

Times offered

Twice per year, winter semester, summer semester

Duration

4-6 weeks

Person in charge

Dr. Tijana Radic, Dr. Tassilo Jungenitz, Prof. Thomas Deller

Confirmation of completion

Participation

Regular participation

Course assessment

1 seminar talk on the results of own experiments, 1 seminar talk on current publications, work report

Teaching forms

Practical, self-study

Tuition language

English

Module exam

Form / duration / content (if applicable)

Graded protocol or exam (45 min)

<table>
<thead>
<tr>
<th>Plasticity in Hippocampus – Morphology, Physiology, and Clinical Relevance</th>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
Content
The practical involves experiments using the following methods: cultivating neuronal cells (primary cells and neuronal cell lines), inducing ischemia \textit{in vivo} in rats, \textit{in vitro} hypoxia/ischemia, application of further stress stimuli \textit{in vitro}, assessing neuronal cell death and neuroprotection by cytokines and pharmaceuticals \textit{in vitro} and \textit{in vivo}, detecting proteins and other compounds in the cell using fluorescence and laser scanning microscopy, transcriptional stress responses in neurons as well as transfection techniques and live cell imaging.

Objectives
Familiarity with cell culture techniques and molecular biological techniques in experimental neurosciences, knowledge about anesthetising and surgical approaches in animal experiments, learning how to work on scientific questions based on relevant publications.

Requirements for participating
none

Helpful previous knowledge:
none

Assignment of module (course/department)
Interdisciplinary Neuroscience / FB15

Suitable for other courses
Once per year, summer semester

Duration
4 weeks

Person in charge
Prof. Donat Kögel, Prof. Abdelhaq Rami

Confirmation of completion
Participation
Regular participation

Course assessment
1 seminar talk on the results of one’s own experiments, 1 seminar talk on current publications, work report

Teaching forms
Practical, self-study

Tuition language
English

Module exam
Module completion exam
Form / duration / content (if applicable)
Graded protocol

<table>
<thead>
<tr>
<th>Brain Damage and Neuroprotection</th>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

28
Content

The practical provides an introduction to basic image analysis, image interpretation and acquiring data by examining the CNS (cerebral and spinal) with neuroradiological imaging procedures. The following procedures are used: molecular resonance tomography (MRT) of the head and spinal column, computer tomography (CT) of the skull and spinal column, digital cerebral and spinal subtraction angiography (DSA) as well as an introduction to basic neuroradiological intervention measures.

In addition, the practical presents the theoretical / physical background to individual analysis procedures in neuroradiology focussing on nuclear resonance tomography. This will deal with the physical basis of MRT / image composites, sequences and sequence parameters of MRT, diffusion and perfusion weighted MRT imaging, tractography (fibre tracking), functional MRT (fMRT), nuclear resonance spectroscopy analysis (MR spectroscopy).

The students compile a written protocol on the investigations carried out and present this along with the theoretical background in the form of a seminar talk.

Objectives

Familiarity with neuroanatomy (cerebral/spinal) as well as the skull and spinal column; basic knowledge about relevant neurological diseases. Learning about indications for neuroradiological examination, acquiring and interpreting images as well as assigning them to typical individual clinical pictures.

Requirements for participating

none

Helpful previous knowledge:

Basic knowledge of German language

Clinical Neuroimaging

<table>
<thead>
<tr>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Module exam</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Sum</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

Teaching forms

Practical, self-study

Tuition language

English

Module exam

Form / duration / content (if applicable)

Graded protocol
Content

The practical teaches most important basics of objective and subjective audiometric measurement techniques to assess hearing disorders. Pure tone and speech audiometry as well as clinical application of otoacoustic emissions, impedance measurements of the eardrum, and different methods of auditory brainstem response recording (BERA, CERA, ASSR, MMN) shall be demonstrated. The fitting of implantable hearing aids and cochlear implants will be shown in different patients. Intra-operative assessment of neuro-physiological auditory responses will be also part of the practical.

The students work on their own projects with supervision, and present their results in the form of a seminar talk. In a further seminar talk they present an original piece of research from the field of neuro-physiological stimulation/recording of auditory responses. They learn how to present scientific work through writing up an appropriate result protocol. The main topics are: psychoacoustic measurements of auditory perception with electrical stimulation by means of cochlear implants, investigation of different recording techniques to assess frequency specific responses of the auditory system, use of computer/software in evaluating data and generating stimuli.

Objectives

Familiarity with carrying out psycho-acoustical experiments, measuring auditory brainstem responses, basics of audimetry, learning how to work on scientific questions based on relevant publications.

Requirements for participating

none

Helpful previous knowledge:

none

Assignment of module (course/department)

Interdisciplinary Neuroscience / FB15

Suitable for other courses

winter semester, summer semester

Duration

4 weeks

Person in charge

Prof. Uwe Baumann

Confirmation of completion

Regular participation

Course assessment

1 seminar talk on the results of one’s own experiments, 1 seminar talk on current publications, work report

Teaching forms

Practical, self-study

Tuition language

English

Module exam

Form / duration / content (if applicable)

Graded protocol

<table>
<thead>
<tr>
<th>Clinical Auditory Neuroscience</th>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Content

The aim of this practical is to introduce students to a wide-range of experimental techniques that are used to study psychiatric disorders from the bench to the bedside. The wide variety of translational projects that students can participate in include cell culture techniques to functionally evaluate gene candidates identified from studies in large cohorts of patients, the assessment of the effect of drug targeted, viral vector targeted or knockout mice in behavioural tests relevant for psychiatric disorders. After such experiments, a variety of immunohistochemical and histological characterisations are performed. There is also the possibility to gain insight into how neuroimaging methods, such as functional magnetic resonance imaging, electroencephalography and magnetoencephalography are used to assess aberrant neural processing and coordination in psychiatric disorders.

Objectives

Students will receive training in a range of molecular and behavioural techniques commonly used to study psychiatric disorders and design experiments using the knowledge gained. They will also receive basic knowledge about the disorders, particularly mood and anxiety disorders, schizophrenia and attention-deficit hyperactivity disorder, in a series of seminars and journal clubs (including the option to participate in case presentations).

Requirements for participating

none

Helpful previous knowledge:

none

Assignment of module (course/department)

Interdisciplinary Neuroscience / faculty 16

Suitable for other courses

Times offered

winter semester, summer semester

Duration

6 weeks

Person in charge

Prof. David Slattery

Confirmation of completion

Regular participation

Course assessment

1 seminar talk on experimental results, 1 seminar journal article, work report

Teaching forms

Practical, self-study

Tuition language

English

Module exam

Form / duration / content (if applicable)

Graded protocol

<table>
<thead>
<tr>
<th>Experimental and Translational Psychiatry</th>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
After attending this practical the students will know and be able to autonomously implement basic cell-biological techniques to study genetic variants in human neuronal cell models. These techniques include cell culture methods to study neuronal differentiation and to genetically modify DNA sequences using CRISPR/Cas9 as well as fluorescence and luciferase luminescence assays. After modification of the human neuronal progenitor cell lines several immuno-histochemical and morphological assays can be adapted to study and statistically analyze the hypothesized effects. In addition we offer basic insights into genome and transcriptome analysis.

The state of the art molecular and cell-biological methods will be introduced to the students to analyze human neurons in vitro. This knowledge will be implemented by the students within an individual project designed together with the students. At the end of the practical experience the students will have the know-how to use human neuronal progenitor cell lines as cellular model for psychiatric disorders. In addition, within optional seminars and journal clubs, also in close collaboration with the adult psychiatry, the student can expand their current knowledge about underlying psychiatric conditions such as Autism Spectrum Disorder, Attention-Deficit-Hyperactivity-Disorder or Conduct Disorder.

Helpful previous knowledge:
cell culture techniques

Assignment of module (course/department) Interdisciplinary Neuroscience / faculty 16

Suitable for other courses

Times offered winter semester, summer semester

Duration 6 weeks

Person in charge Prof. Dr. Andreas Chiocchetti

Confirmation of completion

Participation Regular participation

Course assessment 1 seminar talk on experimental results, 1 seminar presentation on recent scientific papers, work report

Teaching forms Practical, self-study

Tuition language English

Module exam Form / duration / content (if applicable)
Module completion exam Graded protocol

<table>
<thead>
<tr>
<th>Neurobiological human cell models</th>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td>X</td>
</tr>
</tbody>
</table>
The aim of this module is to give students insights into the analysis of human magnetic resonance imaging (MRI) data. This includes the analysis of brain MRI data from individuals with autism spectrum disorder (ASD) in comparison to control groups and can be conducted based on brain atlas regions. The statistical analysis is based on morphological features like cortical thickness, surface area or the local gyrification index.

We also offer the possibility to gain insight into neuroimaging methods, data collection and management. Students will understand how structural MRI data can be used to assess the aberrant neuroanatomy in psychiatric disorders such as ASD.

The students will learn about the theoretical background of autism spectrum disorders and gain basic knowledge about methods of experimental psychology, with a focus on the acquisition and the analysis of neuroanatomical MRI data. They will perform basic statistical analyses with R and/or Matlab. The results will be visualized and presented in a short seminar talk and a work report.

Requirements for participating
none

Helpful previous knowledge:
Basic proficiency in Matlab or R might be helpful but is not a prerequisite.

Assignment of module (course/department) Interdisciplinary Neuroscience / faculty 16

Suitable for other courses

Times offered First half of the summer semester

Duration 6 weeks

Person in charge Prof. Christine Ecker

Confirmation of completion

Participation Regular participation

Course assessment 1 seminar talk on experimental results, 1 seminar journal article, work report

Teaching forms Practical, self-study

Tuition language English/German

Module exam Form / duration / content (if applicable)

Module completion exam Graded protocol

<table>
<thead>
<tr>
<th>Neuroimaging Biomarkers in Psychiatry</th>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>X</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Elective Module Subject Area C: Cognitive and computational neuroscience

<table>
<thead>
<tr>
<th>INS C-0</th>
<th>Externes Praxismodul „Cognitive und theoretische Neurowissenschaften“</th>
<th>Elective module</th>
<th>11 CP = 330 h</th>
<th>11 SWH</th>
</tr>
</thead>
</table>

Content
The practical provides basic methods and technologies in the area of cognitive and theoretical neurosciences. The students work on their own topical projects under instructions and introduce the results in the form of a seminar talk. They learn how to present scientific work through writing up an appropriate result protocol. The module can be offered by departments of the Goethe university, from other universities in Germany and foreign countries as well as by external-university research facilities.

Objectives
The students gain knowledge in the realization of experiments in the area of cognitive neurosciences and/or in computational modeling of neurobiological questions. They learn working independently on scientific questions based on relevant publications.

Requirements for participating
none

Helpful previous knowledge:
none

Assignment of module (course/department)
Interdisciplinary Neuroscience / FB15

Suitable for other courses

Times offered
Depending on provider

Duration
Depending on provider

Person in charge
Head of examination board of the master’s degree course “Interdisciplinary Neuroscience

Confirmation of completion

Participation
Regular participation

Course assessment
The regulations of the provider of the elective module are applied. If the provider does not request any study proofs, a working report must be written, and talks have to be given on both, results of own experiments and topical literature.

Teaching forms
Practical, self-study

Tuition language
Depending on provider

Module exam

Module completion exam
The regulations of the provider of the elective module are applied. If grading is not scheduled by the provider, the module completion exam shows a graded protocol.

External Practical Module “Cognitive and theoretical Neuroscience”

<table>
<thead>
<tr>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X
Content
This module is equivalent to the module M-SIM 1: Modellierung und Simulation 1, offered in the Master course “Informatics”, Faculty 12 (Computer Science and Mathematics). It consists of a lecture (SIM1) and a practical course (SIM1-MPR). The lecture imparts: 1) Introduction to vector analysis: functions of several variables, derivatives and integrals, integral theorems. 2) Modeling: Modeling approaches, conservation equations, constitutive relations. 3) Simulation methods:
The practical offers complementary programming work to the lecture.

Objectives
Familiarity with the basics of modelling and numerical simulation

Requirements for participating
none

Helpful previous knowledge:
Contents of the mathematical basic lectures as well as the lecture „introduction to the numerical mathematics“, programming knowledge

Assignment of module (course/department)
Master Informatics / Department 12 Mathematics

Suitable for other courses
Once per year, summer semester

Duration
One semester

Person in charge
Prof. Gabriel Wittum

Confirmation of completion

Participation

Course assessment
Programming task to SIM1-PR

Teaching forms
Lecture, Practical, self-study

Tuition language
Normally German, English if required

Module exam

Module completion exam
Oral exam or written exam (120 min) to SIM1, depending on number of participants

Modelling and Simulation

<table>
<thead>
<tr>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>8</td>
<td>8</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>Lecture</td>
<td>V</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Module exam</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The practical and seminars provide an overview of computational and mathematical modeling of neural systems specifically focusing on modeling neurons and networks of the hippocampus. The course is an entry to the theoretical methods and approaches used to model the brain at different levels, ranging from synapses and dendrites to neurons and neural circuits. The aim is to learn standard techniques for building, managing, and using models that are closely linked to experimental data, especially those that involve hippocampal cells with complex anatomical and biophysical properties. Computational (in silico) experiments include large-scale network simulations in biophysically realistic and data-driven models of the hippocampus as well as single-cell simulations in morphologically reconstructed hippocampal neurons.

In the accompanying seminars, the relevance of computational models for understanding the function of the brain is discussed using examples from recent research papers.

Objectives

- Basic cable and network modeling techniques;
- Learning how to use NEURON (software for empirically-based simulations of neurons and networks of neurons, http://www.neuron.yale.edu/neuron/);
- Learning how to work on scientific questions based on relevant publications.

Requirements for participating

None

Helpful previous knowledge:

Background in Physics, Mathematics or Informatics

<table>
<thead>
<tr>
<th>INS C-4</th>
<th>Virtual Hippocampus – Introduction to Computational Neuroscience</th>
<th>Elective module</th>
<th>11 CP = 330 h</th>
<th>11 SWH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contact study</td>
<td>Self-study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SWH / 165 h</td>
<td>165 h</td>
</tr>
<tr>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>The practical and seminars provide an overview of computational and mathematical modeling of neural systems specifically focusing on modeling neurons and networks of the hippocampus. The course is an entry to the theoretical methods and approaches used to model the brain at different levels, ranging from synapses and dendrites to neurons and neural circuits. The aim is to learn standard techniques for building, managing, and using models that are closely linked to experimental data, especially those that involve hippocampal cells with complex anatomical and biophysical properties. Computational (in silico) experiments include large-scale network simulations in biophysically realistic and data-driven models of the hippocampus as well as single-cell simulations in morphologically reconstructed hippocampal neurons.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In the accompanying seminars, the relevance of computational models for understanding the function of the brain is discussed using examples from recent research papers.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assignment of module (course/department)</th>
<th>Interdisciplinary Neuroscience / FB15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable for other courses</td>
<td></td>
</tr>
<tr>
<td>Times offered</td>
<td>winter semester, summer semester</td>
</tr>
<tr>
<td>Duration</td>
<td>4 weeks</td>
</tr>
<tr>
<td>Person in charge</td>
<td>Prof. Dr. Peter Jedlicka</td>
</tr>
<tr>
<td>Confirmation of completion</td>
<td></td>
</tr>
<tr>
<td>Participation</td>
<td>Regular participation</td>
</tr>
<tr>
<td>Course assessment</td>
<td>1 seminar talk on the results of one’s own experiments, 1 seminar talk on current publications, work report</td>
</tr>
<tr>
<td>Teaching forms</td>
<td>Practical, self-study</td>
</tr>
<tr>
<td>Tuition language</td>
<td>English</td>
</tr>
<tr>
<td>Module exam</td>
<td>Form / duration / content (if applicable)</td>
</tr>
<tr>
<td>Module completion exam</td>
<td>Graded protocol</td>
</tr>
<tr>
<td>Virtual Hippocampus – Introduction to Computational Neuroscience</td>
<td>Teaching forms</td>
</tr>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
</tr>
</tbody>
</table>
Content

The module introduces students on neural networks (cortical and subcortical) which are important for cognitive and sensomotoric processing. A main focus lies in the investigation of hemispheric lateralisation, mainly concerning linguistic processing and motor control of movements of the hand. Healthy volunteers and patients are examined in view of their behavioral reactions and under use of electric and magneto-encephalographic techniques. In addition, electrocorticographic data are raised by patients during brain operations.

The students get familiarized with the used methods and acquire knowledge on the organisation principles of neural networks. The students will work on a specific fMRI case study in the first week of the module and then carry out behavioral tests and imaging experiments independently or under instructions as well as visit weekly seminars.

Objectives

Acquisition and analysis of human functional imaging or neurophysiological data (patients and/or healthy controls). Learning how to work on scientific questions based on relevant publications.

Requirements for participating

none

Helpful previous knowledge:

none

Assignment of module (course/department)

Interdisciplinary Neuroscience / FB15

Suitable for other courses

Times offered

winter semester, summer semester

Duration

4 weeks

Person in charge

PD Dr. Christian Kell

Confirmation of completion

Participation

Regular participation

Course assessment

1 seminar talk on the results of one’s own experiments, 1 seminar talk on current publications, work report

Teaching forms

Practical, self-study

Tuition language

English

Module exam

Graded protocol

<table>
<thead>
<tr>
<th>Systems Neuroscience – Sensorimotor and cognitive networks</th>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>X</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Content

Based on neuroanatomical data from recent advances in microscopy and genetic techniques, we will generate models with a main focus on dendritic and axonal interactions. We will use image processing tools and quantitative analysis methods in the computer to digitise various anatomic components from microscopy image stacks. In their digital form, measured geometric properties can be matched to corresponding biophysical principles. For example, we can observe and measure the formation of neural circuits during development by using time-lapse imaging series. The measured structure of dendrites and axons then enables conclusions about connectivity and function in those circuits. The observed principles will then be tested in simple quantitative models. The module Computational Neuroanatomy will therefore bridge the way from data analysis to the generation of a scientific theory using simple computer models.

Objectives

The participants will learn to handle biological data using quantitative methods (incl. the usage of Matlab). They will further learn to generate simple models that reproduce the trends observed in these data. The projects will be selected to match the current research focus in the lab.

Requirements for participating

none

Helpful previous knowledge:

Programming experience
Content
This lab course offers an introduction to the design and implementation of computer models of neural networks and the modeling of neuronal plasticity mechanisms. The course is a practical introduction to central methods of Computational Neuroscience, which investigates the functioning of the brain at multiple levels with the help of computational models. Participants implement and analyze standard neuron models and network architectures. The focus is on the role of plasticity mechanisms, their impact on network dynamics and their role in learning. The benefits and limitations of computer models for understanding brain function are discussed in the context of examples from the literature. Participants present their results in a talk and prepare a final report.

Objectives
Participants learn how to implement computer models of neural networks as well as different plasticity mechanisms and learning approaches. They learn to address a scientific question in the context of relevant literature.

Requirements for participating
Please consult with „Modulverantwortlichen“ regarding prerequisites.

Helpful previous knowledge:
- Programming abilities in at least one programming language (e.g. Python, Matlab, Java)
- Background in a quantitative discipline (e.g. Physics, Mathematics, Computer Science or Engineering). Basic knowledge in the areas linear algebra, probability and statistics, differential equations, numerical methods.

Assignment of module (course/department)
Interdisciplinary Neuroscience / FB15

<table>
<thead>
<tr>
<th>Suitable for other courses</th>
<th>summer semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>4 weeks</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Person in charge</th>
<th>Prof. Dr. Jochen Triesch</th>
</tr>
</thead>
</table>

Confirmation of completion

<table>
<thead>
<tr>
<th>Participation</th>
<th>Regular participation</th>
</tr>
</thead>
</table>

Course assessment
1 seminar presentation on the results of one’s own experiments, work report

Teaching forms
Practical, self-study

Tuition language
English

Module exam
Form / duration / content (if applicable)
Graded protocol

Computational Modeling of Neuronal Plasticity

<table>
<thead>
<tr>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>
Content
Our aim will be to understand how connectivity and the spiking dynamics of individual neurons interact to give rise to complex collective phenomena such as information transmission, oscillations, or wave emergence in a neural network. We will use spiking neurons in computer simulations and pen-and-paper calculations to predict the dynamics emerging in a given network. Specifically, the students will write own code and will mostly work on new, open scientific problems that are not part of the textbook knowledge. The module Computational neural dynamics will therefore teach students to formulate own models, learn to solve or simulate these models, and teach them how to evaluate the findings and compare them to known biological observations. Among the effects, which we will include in the spiking network models, will be synaptic plasticity, firing rate adaptation, or different connectivity profiles.

Objectives
The participants will learn how to solve differential equations and write own computer code, e.g. in Python, C or Matlab. They will learn how to distill minimal theoretical models from physiological observations and published research. The student projects will be aligned with the ongoing research in the Tchumatchenko lab.

Requirements for participating
none

Helpful previous knowledge:
Previous knowledge in physics, mathematics or informatics and coding

Assignment of module (course/department) Interdisciplinary Neuroscience / FB15
Suitable for other courses

Times offered Winter semester, summer semester
Duration 4 weeks
Person in charge Dr. Tatjana Tchumatchenko/Prof. Manfred Kössl (program director)

Confirmation of completion
Participation Regular participation
Course assessment 1 seminar presentation on the results of one’s own experiments, 1 seminar presentation on recent scientific papers, work report

Teaching forms Practical, self-study
Tuition language English

Module exam
Module completion exam Form / Dauer / ggf. Inhalt
Graded protocol (Practical exam: solving a computational problem)

<table>
<thead>
<tr>
<th></th>
<th>Teching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Computational neural dynamics</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>X</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>
Module description Master „Interdisciplinary Neuroscience“
as of 01.03.2022

<table>
<thead>
<tr>
<th>INS C-13 Models for Neural Circuit Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Models der Entwicklung neuronaler Schaltkreise</td>
</tr>
<tr>
<td>Elective module</td>
</tr>
<tr>
<td>11 CP (insg.) = 330 h</td>
</tr>
<tr>
<td>Contact study</td>
</tr>
<tr>
<td>11 SWH / 165 h</td>
</tr>
<tr>
<td>Self-study</td>
</tr>
<tr>
<td>165 h</td>
</tr>
<tr>
<td>11 SWH</td>
</tr>
</tbody>
</table>

Content
This module will focus on understanding the principles guiding the formation of sensory maps and receptive fields during the development of sensory circuits. The students will obtain an overview of existing models of the development of topography, ocular dominance columns, orientation and direction selectivity in the visual cortex. We will examine how different mechanisms including: emergence of diverse single neuron properties and activity-dependent synaptic plasticity interact during development to give rise to functional circuits. In addition to synaptic plasticity, which is more commonly studied, the focus will be on the role of the specific biophysical properties at the single neuron level. The students will have the opportunity to analyze (electrophysiological or Calcium imaging) data from visual cortex and build their own models of the assembly and tuning of developing neuronal circuits.

Objectives
Students will learn to analyze and interpret neural data, build and simulate computational models (e.g. in C, Matlab, or Python), and analyze model results in relation to experiments. Acquired skills include: statistical analysis, computer programming and simulations.

Requirements for participating
None

Helpful previous knowledge:
Some programming experience and background in a quantitative discipline (Physics, Mathematics, Engineering, Informatics).

Assignment of module (course/department)
Interdisciplinary Neuroscience / FB15

Suitable for other courses
None

Times offered
winter semester, summer semester

Duration
4 weeks

Person in charge
Dr. Julijana Gjorgjieva/Prof. Manfred Kössl (program director)

Confirmation of completion
Regular participation

Course assessment
1 seminar presentation on the results of one’s own experiments, 1 seminar presentation on recent scientific papers, work report

Teaching forms
Practical, self-study

Tuition language
English

Module exam
Form / Dauer / ggf. Inhalt
Graded protocol

<table>
<thead>
<tr>
<th>Models for Neural Circuit Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module completion exam</td>
</tr>
<tr>
<td>Teching forms</td>
</tr>
<tr>
<td>P, SeStu</td>
</tr>
</tbody>
</table>

Sum
11 11
Content
This practical course provides an introduction to conducting research in Human Cognitive Science also known as Cognitive Psychology. In particular, students taking part will be able to gather hands-on experience in designing, programming, executing and analysing experiments in the areas of visual attention, scene perception, and memory. Depending on currently ongoing projects in the “Scene Grammar Lab”, the students can participate in neurocognitive studies using techniques such as EEG, eye tracking (both stationary and mobile ET glasses), and/or psychophysics. At the end of this practical course the students will have learned about the theoretical background of the projects, as well as data acquisition, data analysis, and interpretation of results. While we expect the students to work independently, the various members of the lab will be there to help where possible.

As part of our weekly lab colloquium, students will be able to learn about other ongoing projects and will have the opportunity to present their work in this informal setting. At the end of the course, students are expected to write a brief paper (intro, methods, results, discussion) on the study they were working on.

Objectives
Reading up on theoretical backgrounds in the field of attention, perception, and memory, learning methods of experimental psychology, basics of acquisition and analysis of (neuro-)cognitive data, performing basic statistical analyses and writing a scientific paper.

Requirements for participating
none

Helpful previous knowledge:
Basic knowledge in Matlab/Python, as well as statistical analyses using R. Looking at our webpage beforehand might also be helpful: www.SceneGrammarLab.com.

<table>
<thead>
<tr>
<th>Assignment of module (course/department)</th>
<th>Interdisciplinary Neuroscience / FB 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable for other courses</td>
<td></td>
</tr>
<tr>
<td>Times offered</td>
<td>Once per year, winter semester</td>
</tr>
<tr>
<td>Duration</td>
<td>4 weeks</td>
</tr>
<tr>
<td>Person in charge</td>
<td>Prof. Melissa Vo</td>
</tr>
<tr>
<td>Confirmation of completion</td>
<td></td>
</tr>
<tr>
<td>Participation</td>
<td>Regular participation</td>
</tr>
<tr>
<td>Course assessment</td>
<td>1 colloquium talk discussing the outcome of the conducted experiment(s), 1 scientific report</td>
</tr>
<tr>
<td>Teaching forms</td>
<td>Practical, self-study</td>
</tr>
<tr>
<td>Tuition language</td>
<td>English</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
</tr>
<tr>
<td>Module completion exam</td>
<td>Form / duration / content (if applicable)</td>
</tr>
<tr>
<td></td>
<td>Graded paper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cognitive Psychology – Attention, Perception & Memory</th>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>X</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Content
Our brain is highly plastic and undergoes dynamic changes across the lifespan. These developmental changes are reflected in modifications of cognitive functions, such as learning and memory. In our lab, we are interested in how the human brain and cognitive systems develop throughout the lifespan, particularly in how age-related neurocognitive changes influence the way we learn and extract regularities from the environment and our ability to create memories of unique experiences.

For this, we conduct experiments in which we test participants of different age groups, using cognitive tasks designed to tap into specific processes involved in learning and memory. Depending on the stage of the experiment that you will work on, you may get experience in programming cognitive tasks, Matlab/Python/R programming, processing of behavioural/neuroimaging data, and/or conducting statistical/computational model analyses.

Objectives
In this elective module the students will get exposed to several techniques used to collect human experimental data: cognitive tasks to collect participants’ behavioural data, neuroimaging data while participants are performing tasks, and/or computational modeling of participants’ data. In addition, the students will learn how to design and program cognitive tasks, and they will learn different methods for analyze data, which will require them to learn Matlab/Python/R programming. The students will work in an international environment and learn how to write and communicate their results in English.

Requirements for participating
none
Helpful previous knowledge:
none
Assignment of module (course/department) Interdisciplinary Neuroscience / faculty 15
Suitable for other courses
Winter semester, summer semester
Duration 4 weeks, full-time or 8 weeks part-time
Person in charge Prof. Dr. Yee Lee Shing
Confirmation of completion
Regular participation
Course assessment Protocol and a 20 min presentation (15 + 5 min) covering the experimental results and a short review of the relevant literature.
Teaching forms Practical, self-study
Tuition language English
Module exam Form / duration / content (if applicable) Graded protocol
Module completion exam

<table>
<thead>
<tr>
<th>Developmental cognitive neuroscience</th>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Module exam</td>
<td></td>
<td>11</td>
<td>11</td>
<td>X</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Elective Modules Subject Area D: Applied Aspects of Neuroscience

Module description Master „Interdisciplinary Neuroscience“

as of 01.03.2022

<table>
<thead>
<tr>
<th>INS D-0</th>
<th>Externes Praxismodul „Angewandte Aspekte in den Neurowissenschaften“</th>
<th>Elective module</th>
<th>11 CP = 330 h</th>
<th>11 SWH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contact study</td>
<td>Self-study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 SWH / 165 h</td>
<td>165 h</td>
</tr>
</tbody>
</table>

Content

The practical provides basic methods and technologies in the area of applied aspects of neurosciences. The students work on own projects under instructions and introduce the results in the form of a seminar talk. They learn how to present scientific work through writing up an appropriate result protocol. The module can be offered by departments of the Goethe university, from other universities in Germany and foreign countries as well as by external-university research facilities.

Objectives

The students gain knowledge in the realisation of experiments in the area of applied neurosciences. They learn working independently on scientific questions based on relevant publications.

Requirements for participating

none

Helpful previous knowledge:

none

Assignment of module (course/department)

Interdisciplinary Neuroscience / FB15

Suitable for other courses

Depending on provider

Duration

Depending on provider

Person in charge

Head of examination board of the master’s degree course “Interdisciplinary Neuroscience

Confirmation of completion

Regular participation

Course assessment

The regulations of the provider of the elective module are applied. If the provider does not request any study proofs, a working report must be written, and talks have to be given on both, results of own experiments and topical literature.

Teaching forms

Practical, self-study

Tuition language

Depending on provider

Module exam

Form / duration / content (if applicable)

The regulations of the provider of the elective module are applied. If grading is not scheduled by the provider, the module completion exam shows a graded protocol.

Teaching forms SWH CP Semester

<table>
<thead>
<tr>
<th>Practical</th>
<th>P, SeStu</th>
<th>11</th>
<th>11</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

X
Module description Master „Interdisciplinary Neuroscience“ as of 01.03.2022

INS D-1

Behavioral Biology in Zoos

Verhaltensbiologie in Zoos

Elective module

<table>
<thead>
<tr>
<th>11 CP = 330 h</th>
<th>Contact study</th>
<th>Self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 SWH / 165 h</td>
<td>165 h</td>
<td></td>
</tr>
</tbody>
</table>

Content
The module consists of a seminar, an internship and excursion. Fundamental aspects and current issues of Zoology are taught in the seminar at the beginning based on original work, which will be presented by the students and then discussed as a group. The excursion to various zoos and a research internship in the 'Opel Zoo' serve to solidify theoretical principles. The focus will be on ecological, physiological and ethological research. Other topics include: historical development of zoos, zoos & conservation, population biology & breeding programs at the zoo, animal husbandry (nutrition, behaviour, enrichment, mixed species exhibits), veterinary fundamentals, organization and structural development, enclosure design and planning, education at the Zoo. The methodological approach to the practical components depends on the selected research focus, with classical to modern methods of behaviour research available. They may include laboratory activities (microscopic and physiological studies) and imaging techniques (such as thermographic measurements with infrared cameras or video analysis with high-speed cameras).

The students present their results at the end of the module in the form of an oral presentation. In a further lecture they learn to critically appraise original work at the 'Opel Zoo'. These presentations will be held in English and students are given detailed feedback in terms of content and structure. By drafting a protocol in the form of a paper they become acquainted with the writing of a scientific publication. Following a detailed briefing on the methodology, planning, implementation, logging and analysis of the original data will be completed by the students independently.

Objectives
The students acquire basic principles in the field of zoo biology (behaviour research in the zoo, enrichment, husbandry, conservation aspects), as well as the application of modern imaging techniques. You will learn methodology for the implementation of behavioural studies and how to address scientific problems while bearing in mind current concepts in the relevant literature.

Requirements for participating
none

Helpful previous knowledge:
none

Assignment of module (course/department)
Interdisciplinary Neuroscience / FB15

Suitable for other courses
yes

Times offered
Once per year, summer semester

Duration
5 weeks

Person in charge
Prof. Dr. Paul Dierkes

Confirmation of completion
Regular participation

Course assessment
1 seminar presentation on the results of one’s own experiments, 1 seminar presentation on recent scientific papers, work report

Teaching forms
Seminar, practical, self-study, excursion

Tuition language
English

Module exam
Form / duration / content (if applicable)
Graded protocol

Behavioral Biology in Zoos

<table>
<thead>
<tr>
<th>Teaching forms</th>
<th>S</th>
<th>CP</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>P, SeStu</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Seminar</td>
<td>S</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Excursion</td>
<td>Ex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

45
Module description Master „Interdisciplinary Neuroscience“ as of 01.03.2022

<table>
<thead>
<tr>
<th>INS WP-0</th>
<th>Individuelle Studien</th>
<th>Elective module</th>
<th>11 CP = 330 h</th>
<th>11 SWH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free-choice Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content

See description of respective module.

Modules can originate from e.g. Master programs of the departments of Informatics and Mathematics (FB 12), Biochemistry, Chemistry and Pharmacy (FB 14), Biosciences (FB 15), Philosophy and History (FB 8), Psychology and Sports Sciences (FB 05).

The module can also be offered by other universities in Germany and foreign countries. Alternatively an industrial placement or research training period can be carried out in a university or external-university research institution or a company.

Objectives

See description of respective module

Requirements for participating

none

Helpful previous knowledge:

none

Assignment of module (course/department)

Interdisciplinary Neuroscience / FB15

Suitable for other courses

Depending on provider

Times offered

Depending on provider

Duration

Head of examination board of the master’s degree course “Interdisciplinary Neuroscience

Confirmation of completion

Regular participation

Course assessment

The regulations of the provider of the elective module are applied. If the provider does not request any study proofs, a working report must be written, and talks have to be given on both, results of own experiments and topical literature.

Teaching forms

Practical, Tutorial, Lecture, Seminar, Excursion, self-study

Tuition language

Depending on provider

Module exam

Form / duration / content (if applicable)

The regulations of the provider of the elective module are applied.

If grading is not scheduled by the provider, the module completion exam shows a graded protocol.

Free-choice studies

<table>
<thead>
<tr>
<th>Teaching forms</th>
<th>SWH</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, SeStu; L, S, Ex</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

Module exam

<table>
<thead>
<tr>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

| Sum | 11 | 11 |

46